Screening for HPV
Women with an intact immunological response system will not carry the virus
their entire live. Infections by HPV subtypes will generate an immune response
that protects against subsequent infections by the same type. The derived immune
response will temper some infections with other types and result in transient
lesions in many women. The overall prevalence of HPV in the target population
is 20%. Since HPV exposure is greatest in young sexually active women, detection
of the virus will exceed by several-fold the ability to detect abnormalities.
In post-menopausal women, the HPV infection index is much lower, but cytological
abnormalities are detected more often. It is clear that the PAP screening procedure
is effective and it has been demonstrated that a positive HPV test is a powerful
independent risk factor for the development of CIN lesions, as 93-100% of invasive
carcinomas are associated with HPV infections. However, the relative value of
screening for HPV in a population is shown by combining the high prevalence
of HPV with the long time frame between infection and development of cancer.
In other words, the incidence of cancer in women under 25-30 years old is very
low whereas the incidence of HPV infection is about 40%. High throughput population
screening without morphological-based diagnosis will result in high numbers
of virus positive patients, most of whom will never suffer any consequences
of the infection, making such testing redundant and a financial burden for healthcare.
It is therefore more advisable to target HPV screening, i.e. screening those
women for HPV who have developed early cytological abnormalities in order to
monitor possible developments towards more serious abnormalities, thus being
able to interfere with the disease at an early stage. The in situ HPV hybridization
test enables visual control on the cells and the localization of infection as
opposed to testing procedures in liquid formats. The information on histological
details in combination with HPV in situ hybridization can therefore exclude
false positives and innocent positives (young women). Moreover, in situ hybridization
makes it possible to differentiate between episomal or integrated HPV DNA. Studies
have shown that episomal HPV induces genomic changes such as tetrasomies and
single trisomies, while HPV integration correlates to aneusomies and polysomies,
which are predominantly detected in CIN III and micro-invasive carcinoma, demonstrating
that integration of HPV DNA is a pivotal step in the transition of CIN to micro-invasive
carcinoma. Integration of the HPV genome together with histological information
makes it possible to determine between high risk CIN II/III and low risk CIN
I/II and it is here that in situ hybridization provides the tools for improved
diagnosis: specific HPV type information next to morphological details enabling
a distinct diagnosis.
Last but not least:
HPV has also been linked to the etiology of other cancers such as cancer of
the vulva, penis, non-melanoma skin cancers (basal and squamous cell carcinoma),
cancers of the oral cavity, larynx and esophagus. These observations emphasize
the importance of this virus group as proven and suspected human cancer carcinogens.
PanPath's Rembrandt® kit for HPV screening and typing targets the type
specific HPV genomes (approx. 8 Kb). The probes show no cross-hybridization
with other subtypes, provided that the hybridization conditions as laid out
in the protocol are strictly followed.